Efficient Probabilistic Supergraph Search over Large
Uncertain Graphs

Yongxin Tong Xiaofei Zhang

Caleb Chen Cao Lei Chen

Hong Kong University of Science & Technology, Hong Kong, China
{yxtong, zhangxf, caochen, leichen}@cse.ust.hk

ABSTRACT

In recent years, with the emergence of a number of new real appli-
cations, such as protein-protein interaction (PPI) networks, visual
pattern recognition, and intelligent traffic systems, managing huge
volumes of uncertain graphs has attracted much attention in the
database community. Currently, most existing fundamental queries
over graphs only support deterministic (or certain) graphs, although
real graph data are often noisy, inaccurate, and incomplete. In
this paper, we study a new type of uncertain graph query, proba-
bilistic supergraph containment query over large uncertain graphs.
Specifically, given an uncertain graph database UGD which con-
tains a set of uncertain graphs, a deterministic query graph ¢, and
a probabilistic threshold §, a probabilistic supergraph containment
query is to find the set of uncertain graphs from UG D, denoted as
UGDy, such that UGD,; = {ug; € UGD|Pr(ug; C q) > 4}
where Pr(ug; C q) means the likelihood that ug; is a subgraph
of q. We prove that the computation of Pr(ug; C gq) is #P-
hard and design an efficient filtering-and-verification framework to
avoid the expensive computation. In particular, we propose an ef-
fective filtering strategy and a novel probabilistic inverted index,
called PS-Index, to enhance pruning power in the filtering phase.
Furthermore, the candidate graphs which pass the filtering phase
are tested in the verification phase via an efficient unequal proba-
bility sampling-based approximation algorithm. Finally, we verify
the effectiveness and efficiency of the proposed methods through
extensive experiments.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems-Query processing
General Terms

Algorithm, Experimentation, Performance

Keywords

Uncertain Graphs, Graph Querying, Probabilistic Supergraph Query

1. INTRODUCTION

Due to the emergence of many real-world applications of un-
certain graphs, such as protein-protein interaction (PPI) network

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CIKM’14, November 3-7, 2014, Shanghai, China.

Copyright 2014 ACM 978-1-4503-2598-1/14/11 ...$15.00.
http://dx.doi.org/10.1145/2661829.2661872.

809

analysis [7, [15} [17]], visual pattern recognition [2l 3], social net-
work mining [1]], and intelligent traffic monitoring [9], etc., query
processing over large uncertain graphs has attracted much attention
in the database community. Several uncertain graph queries, proba-
bilistic subgraph (or subgraph similarity) queries [24}[23]], £ nearest
neighbor (KNN) query over uncertain graphs [13], uncertain short-
est path query [9], and uncertain distance-constraint reachability
query [10], have been studied recently.

In this paper, we investigate another fundamental graph query,
supergraph containment query, in large uncertain graphs. As a
motivating example for this query, we consider the case in PPI
networks where existences of some interactions are defined with
uncertainty. Specially, in a PPI network][[7| |17], vertices repre-
sent proteins, edges represent interactions between proteins, the la-
bels of vertices are the COG functional annotations of proteins. It
is reasonable to model a PPI network as an uncertain graph [23|
24, (131 27, 26| 28]. In particular, when researchers study some
new types of PPI structures, they want to efficiently identify what
new PPI structures can be included by some known important PPI
structures (which may represent important PPI structural proper-
ties) with high probability. Therefore, it is essential to study the
containment relationship where some uncertain graphs are con-
tained into a given query graph.

The problem of supergraph containment query over determinis-
tic graphs is defined as follows [5]: Given a deterministic graph
database, GD = {gi1,...,9n} and a query graph g, it is to find
the answer set GD; = {¢; € GDl|g: C ¢}, where g; C ¢
means that g; is a subgraph of q. The containment relationship
between a query graph and each deterministic graph is determined
by subgraph isomorphism test, which is a NP-complete problem.
Compared with deterministic graphs, it is much harder for uncer-
tain graphs to decide such a containment relationship between a
query graph and each uncertain graph due to the inherent uncer-
tainty. According to the widely adopted possible world semantic
over uncertain graphs [23| [24} 271 28], each possible world graph
of a given uncertain graph is a possible instance of the uncertain
graph. Therefore, the problem of probabilistic supergraph contain-
ment query over uncertain graphs is described as follows. Given an
uncertain graph database, UGD = {ug,...,ugn}, a query graph
g, and a probabilistic threshold § (0 < § < 1), this query is to find
all uncertain graphs ug; € UGD such that Pr(ug; C q) > 6,
where Pr(ug; C q) is the supergraph containment probability
(SCP) between q and ug;. In reality, SCP is equal to the sum of
the probabilities of all the possible world graphs that are contained
by g. We will illustrate this problem via the following example.

EXAMPLE 1 (Probabilistic Supergraph Containment Query).
Figure [I] shows an uncertain graph database including four un-
certain graphs. The vertices are labeled from a letter set, A, B,
C, D (in this example, we ignore labels of edges for the succinct

J

B)
N
7

=)

(ugs)

(ugs)

(ug2)

Figure 1: An uncertain graph database

B——c) ()
Figure 2: A query graph and a feature graph

q

reason as it is easy to extend labels on edges). In addition, each
vertex and each edge are associated with a real number indicating
their existence probabilities. As an example, all possible world
graphs of ugz are shown in Figure |3| where every real number
below each possible world graph represents the existence proba-
bility of such a possible world graph. Since each possible world
graph is an instantiation of an uncertain graph, the sum of prob-
abilities of 18 possible world graphs of ug> equals to 1. Given
the probabilistic threshold §=0.7, the SCP between q (as shown
in Figure 2) and ugs can be calculated as follows: Pr(ugs C
q)=Pr(pw1) + Pr(pw2) + Pr(pws) + Pr(pwa) + Pr(pws) +
Pr(pws) + Pr(pwr) + Pr(pws) + Pr(pws) + Pr(pwii) +
Pr(pwi2) + Pr(pwis) + Pr(pwis) = 0.352 < 0.7. Thus, ugs
cannot be returned as a final result. Similarly, we can also check
ug1, ugs and uga via the same method.

Based on the aforementioned problem statement, a naive solu-
tion is to sequentially scan all uncertain graphs and calculate their
SCP one by one. It is obviously inefficient. In addition, a closely
related work, targeting at probabilistic subgraph search over un-
certain graphs, was proposed recently [24]. This work designs an
efficient search framework in three steps: structural pruning, prob-
abilistic pruning and verification. For an uncertain graph database,
this method first neglects all probabilities of uncertain graphs and
uses existing techniques of subgraph search in deterministic graphs
to prune some uncertain graphs. Then, it further uses probabilistic
pruning to filter more candidates. Finally, it refines the final re-
sult in the verification phase. Unfortunately, we cannot adopt the
aforementioned framework in [24] since there are intrinsic differ-
ences between subgraph search and supergraph search over uncer-
tain graphs. Here, we firstly define several notations for the conve-
nience of explanation.

We denote the uncertain graph database as UG D, and its corre-
sponding deterministic graph database as G D, which is obtained
by removing all the existence probability values in UGD. More-
over, their query results with the same query graph ¢ are denoted as
UGDg and G Dy, respectively. For subgraph search over uncertain
graphs, we usually observe [UGDy| < |GDy|, where [UGD,|
and |GD,| mean the sizes of UGD, and GD,. On the contrary,
[UGDy| > |GDy| in supergraph search over uncertain graphs. For
example, if an edge, AB which includes two vertices A and B, is
a query graph in the subgraph query, the probabilistic threshold
60 = 0.5, GDap = {ugi,ug2} and UGDap = {ug1}, respec-
tively. Thus, |GDag| = 2 > 1 = |[UGDag| in Figure[[l In
contrast to the subgraph query, given the supergraph query ¢ in
Figure @l GD,; = {ug1} and UGD, = {ug1,uga} with respect
to & = 0.5. In other words, = |UGDy| for the su-
pergraph queries in Figure[T} Therefore, when [UGDg| < |G Dy,
it is reasonable to firstly obtain the candidate set by the structural
pruning techniques used in the deterministic subgraph search then
further filter the candidates via the probabilistic pruning methods.

810

e ~ N T
®» ® ® ®
~ s =\
D @/\ (\E) ©) B (,K @ @
2/ 2/ &/ =/
0.002 0.018 0.008 0.018 0.0144 0.0576 0.1458 0.0162
(PW1) (PW2) (PW3) (PW4) (PW5) (PW6) (PW7) (PWS)
o~ 0N e A
® ® W » @
©) (©) ~
O B0 B © B
0.0072 0.0648 —0.011 ()()W Q’U 04665 \/0 001296
(PW9) (PW10) (PW11) (PW12) (PW13)
® @& @m G

/’\,\

«’A C
Biroare Bdo0si sz@ 0. 419903) O 0.01 1664‘) Jé 04665(&
(PW14) (PW15) (PW16) (PW17) (PW18)

Figure 3: All Possible World Graphs of the uncertain graph ugo

However, when
of deterministic supergraph search as the candidate set because un-
certain graphs may be over-pruned in the structural pruning phase.
Therefore, the structural pruning pruning adopted in [24]] cannot be
applied to solve our problem.

From the above discussion, we discover a probabilistic super-
gaph filtering strategy. Before introducing the filtering strategy, we
first define the concept of feature graphs, which is a determinis-
tic graph and a subgraph of at least a deterministic graph in GD.
Based on feature graphs, the filtering strategy is, given a feature
subgraph f, if f ¢ g and Pr(f C ug:) = p, Pr(ug: C q) <
1 — p, where Pr(f C wug;) is the subgraph isomorphism proba-
bility between f and wg;, which is the sum of the probabilities of
all possible world graphs of ug; that contains q. In other words, if
f ¢ gand p < 6, ug; can be pruned. A formal descriptions and
proofs of above properties will be given in Section [l We illustrate
the above filtering strategy with the following example.

EXAMPLE 2 (Probabilistic Supergraph Filtering Strategy). Given

an uncertain graph database in Figure[ll a query graph q in the left
of Figure[2l a probabilistic threshold §=0.7, a feature subgraph f
in the right of Figure [2l and all possible world graphs of ug2 in
Figure |3l based on the aforementioned filtering strategy, we can
firstly find f ;(_ g, and Pr(f C ug2) = Pr(pwis) + Pr(pwis) =
0.467 > 0.3 = 1 — 0.7. Thus, ugz is pruned.

According to the aforementioned filtering strategy, it is still non-
trivial to decide an optimal feature graph that best serves the prun-
ing efficiently. In this work, we further propose an effective prob-
abilistic inverted index, PS-Index. In addition, in order to speed up
the verification step, we design an efficient sampling algorithm to
calculate SC P. To sum up, we make the following contributions:

e We propose a new problem, the probabilistic supergraph con-
tainment query, and prove that it is a #P-hard problem.
e We design a probabilistic supergaph filtering strategy, a novel

probabilistic inverted index, and an unequal-probability-sampling-

based approximation algorithm in the verification phase.
o We verify the effectiveness and efficiency of the proposed
solutions with extensive experiments.

The rest of the paper is organized as follows. Our problem for-
mulation and complexity analysis are introduced in Section [2l In
Section 3] we propose our solution framework toward the proba-
bilistic supergraph containment query. Based on our probabilistic
supergaph filtering logic, an optimal feature selection approach and
a novel index, PS-Index which help eliminate redundant computa-
tion, are elaborated in Sectiondl An unequal-probability-sampling-
based approximate algorithm in the verification phase is shown in
Section [3l Experimental studies and related work are reported in
Section[f]and Section[7] respectively. Finally, we conclude in Sec-

tion 8l

Notation Meaning
UGD an uncertain graph database
ug an uncertain graph in UG D
PW a set of all possible worlds generated from UG D
pw;(ug) the i-th possible world graph of ug
q a query graph
F a feature set where each feature is a deterministic graph
fi the i-th feature in F'
Pr(q C ug) | subgraph isomorphism probability that g is contained ug
Pr(ug C q) | supergraph containment probability that g contains ug

Table 1: Summary of Notations

2. PROBLEM DEFINITION

In this section, we first review preliminaries with respect to de-
terministic graph search in Section 211 Then, we introduce our
uncertain graph model and problem statement in Section 221 In
addition, a summary of notations is shown in Table [Tl

2.1 Preliminaries

DEFINITION 1. (Deterministic Graph) A labeled undirected graph

is denoted as g =< V, E, L., Le >, where 1) V is the set of ver-
tices; 2) E is the set of edges; 3) L., is a label function assigning
labels to each vertex in V' ; 4) L. is a label function assigning labels
to each edge in E.

DEFINITION 2. (Subgraph Isomorphism) Given two graphs, g =<

V,E,Ly,,Le >and g’ =< V' E' L., L. >, a subgraph isomor-
phism from g to g’ is an injective function f : V. — V', such that
DVu € V, Ly(u) = Ly(f(u)); 2)¥(u,v) € B, (f(u), f(v)) €
El and LE(“: ’U) = Lle(f(u)v f(’U))

DEFINITION 3. (Subgraph and Supergraph) Given two graphs,
g and g', if there is a subgraph isomorphism from g to ¢, g is a
subgraph of g', denoted as g C g', and ¢’ is called a supergraph
of g.

DEFINITION 4. (Subgraph Query) Given a deterministic graph
database GD = {q1,...,9n} and a query graph q, the problem
of subgraph query is to find the query answer set Dqy = {g; €
GDlq C gi}.

DEFINITION 5. (Supergraph Containment Query) Given a de-
terministic graph database GD = {g1, ..., gn} and a query graph
q, the problem of supergraph containment query is to find the query
answer set Dy = {g; € GD|g; C q}.

2.2 Probabilistic Supergraph Containment Query

In this subsection, we first introduce the uncertain graph model
based on the possible world semantics. Then, we define several im-
portant concepts in uncertain graph query, such as the subgraph iso-
morphism probability and the supergraph containment probability.
Finally, we give the problem statement and analyze the complexity
of this problem.

DEFINITION 6. (Uncertain Graph) Given a deterministic graph
g=<V,E,L,, Lc >, a corresponding uncertain graph is defined
ug =< V,E, Ly, Le, Py, P >, where 1) P, : V. — [0,1] is an
injective function assigning existence probabilities to each vertex in
V;2) P.: E — [0,1] is also an injective function assigning exis-
tence probabilities to each edge in E (where existence probabilities
of edges assigned by P, are actually conditional probabilities when
endpoints of edges exist).

DEFINITION 7. (Possible World Graph) Given an uncertain graph
ug =< V,E, Ly, Le, P,, P. >, a possible world graph of ug is
an instance of ug and is denoted pw(ug) =< V', E',L'v,L'e >,
where) V! CV;2) E' C EN(V'xV'); 3) L, is a label function
assigning labels to V'; 4) L., is a label function assigning labels
to E'. L, and L., may assign the same labels of L, and L. or the
non-existence if the corresponding vertex and edge do not exist in
this instance

811

Similar to previous studies of uncertain graph query [23| 24} 26|
27, 28], we also assume that both the existence probabilities of
vertices and the conditional probabilities of edges of an uncertain
graph are mutually independent. Thus, we can compute the prob-
ability of a possible world graph of a uncertain graph ug, denoted

Pr(pw(ug)), as follows.
Pr(pw(ug)) = [[Prv)x [] a-pPrw)x][]
veV\V/ e=(u,v)EE’

veV’
X 11 (1 = Pr(e|u,v))
e=(u,v)EEN(V/XV/')\E’
@
In addition, the set of all possible worlds implicated from UG D
is denoted as PW in this paper. Based on the aforementioned def-
initions, we introduce the concept of the supergraph containment

probability and the problem statement as follows.

DEFINITION 8. (Supergraph Containment Probability (SCP))
Given an uncertain graph ug and a deterministic query graph q, the
supergraph containment probability between q and ug is defined:

Pr(ug C q) = Pr(pw;(ug)) (2
pw;(ug) SgNpw;(ug) € PW (ug)

where PW (ug) means the set all possible world graphs generated
Sfrom ug, pw;(ug) C q and pw;(ug) € PW (ug) mean that possi-
ble world graphs which are contained by q.

Problem Statement (Probabilistic Supergraph Containment
Query over Uncertain Graph Databases): Given an uncertain
graph database UGD = {ugi,...,ugn}, a deterministic query
graph q and a probabilistic threshold 0, this problem is to find the
query answer set UGD, = {ug; € UGD|Pr(ug; C q) > 6}.

Based on the problem statement, a naive solution is to scan each
uncertain graph in UG D and compute the SCP one by one. Unfor-
tunately, as shown in the following theorem, the problem of com-
puting the SC'P is #P-hard.

THEOREM 1. (The Complexity of Supergraph Containment Prob-
ability (SCP) Computation) It is a #P-hard to compute the super-
graph containment probability.

Proof (Sketch): In order to prove the problem of computing the
supergraph containment probability is #P-hard, we reduce it from
the monotone DNF counting problem (##MDNF), which is known
to be #P-complete [20].

Consider an instance of #MDNF: Given a monotone DNF for-
mula F' = Cy V --- V Cp, with n clauses and m Boolean vari-
ables v1,...,vm. In each clause C; = y1 A --- A y;, we have
y; € {v1,...,vm} and each variable can appear at most once. The
#MDNF problem is to count the number of satisfying assignments
of variables for the formula F'.

We map the above instance of #MDNF to an uncertain graph
ug, where each edge e; corresponds to a variable v;. Moreover,
there are n possible world graphs, pwi(ug), ..., pwn(ug), from
the uncertain graph ug, where pw; (ug) corresponds to a clause C;.

Figure 4: The uncertain graph ug and the query graph ¢ con-
structed by v1 V v2 V (v1 A v2)

Pr(e|u,v)

For each possible world graph pw;(ug) and each edge e;, we have
e; € pw;(ug) if and only if v; appears in the clause C;. In other
words, when a query graph ¢ is given, a truth assignment satisfies
F if and only if the corresponding possible world graph pw;(ug)
is contained by ¢. Therefore, the probability Pr(F') equals to the
probability Pr(ug C q). For instance, given a formula F' = vy V
v2 V (v1 A v2), we map it to the corresponding uncertain graph ug
in Figure[d O

3. THE FILTERING-AND-VERIFICATION
FRAMEWORK

In this section, our framework will be introduced as follows.

1. Offline Index Construction: Firstly, we discover all proba-
bilistic frequent subgraphs as the initial candidate of the fea-
ture set. Then, we select the optimal feature set by the users’
query logs. According to the feature set, we finally build a
probabilistic inverted index, PS-Index.

2. Filtering: Based on the PS-Index, we test g against indexed
features in feature set, '. Given the probabilistic threshold
8,if f ¢ gand Pr(f C ug;) > 1 — 4, ug; can be safely
pruned. Finally, we obtain the candidate of result set, C; =
UGD — UscrUGDy(f € q&Pr(f Cug:) > 1—19)

3. Verification: For the uncertain graphs passing the filtering
test, we first check whether each corresponding deterministic
graph g; of ug; is a subgraph of the query graph q. If g; C g,
ug; can be directly returned as the result. Otherwise, we use
an unequal-probability-sampling-based approximation algo-
rithm to verify the supergraph containment probability.

3.1 Cost Model Analysis

Given a query graph g, a feature set F', the query response time
based on the above framework is:

Z TSCP(q’ ng) + Z TSubIsm(f: q) + TrndezSearch (3)
ug; €Cq fer

where Tscp(q,ug;) is the time to check whether the supergraph
containment probability between q and ug; is greater than the given
a probabilistic threshold §(0 < § < 1), T'sybrsm(f, q) is the time
to test whether a feature f is the subgraph of the query graph g,
(namely this time equals to the time of subgraph isomorphism test
between the two deterministic graphs), and TrpdezSearch 1S the
time to find the candidate set Cj in the index.

According to the formulal3] we know that Tscp (g, ug;:) is a #P-

hard operation, T'susrsm (f, q) is a NP-hard operation, and TrndexSearch

can be finished in the polynomial time. Thus, it is reasonable that
TrndexSearch 18 ignored in the total cost model. Moreover, the total
cost can be simplified to the formula

|Cq| x AveTscp + |F| X AveTsybrsm (@)

where |Cy]| is the size of the candidate set, AveTscp is the aver-
age time of computing the supergraph containment probability, | F|
is the size of the feature set, AveTsuprsm is the average time of
testing the subgraph isomorphism.

In addition, an important fact is that AveT'scp is usually sev-
eral orders more than AveTs,b1sm, €ven though we adopt the ap-
proximation algorithm to compute SCP. This fact will be fur-
ther verified in our experiments. In the deterministic environment,
there is the subgraph isomorphism test instead of the computa-
tion of SC'P. Thus, the formula [can be simplified to (|Cq| +
|F|) x AveTsyprsm. To save the cost, existing works of super-
graph query in deterministic graphs always try to minimize the size

812

of |Cq| + |F|. However, in the problem of supergraph query in
uncertain graphs, we have to first guarantee the minimum size of
|Cq|, then try to decrease the size of |F'| as far as possible due to
AveTscp >> AveTsubrsm.

3.2 A Probabilistic Filtering Strategy

In Section[I] we introduce the basic idea of the probabilistic su-
pergraph filtering strategy. Since the filtering strategy is the base of
the feature selection and index construction, we provide the com-
plete proof in this subsection. Moreover, we first define the concept
of subgraph isomorphism probability due to the requirement of this
filtering strategy.

DEFINITION 9. (Subgraph Isomorphism Probability (SIP)) Given
an uncertain graph ug and a deterministic query graph q, the sub-
graph isomorphism probability between q and ug is defined:

Pr(q Cug) = Pr(pw;(ug))
qCpw; (ug)Npw; (ug)EPW (ug)

(&)

where PW (ug) means the set all possible world graphs generated
fromug, g C pw;(ug) Npw;(ug) € PW (ug) means the possible
world graphs which include q.

Based on the definition of subgraph isomorphism probability, we
have the following lemma.

LEMMA 1. (The Upper Bound of Supergraph Containment Prob-
ability) Given a deterministic query graph q, an uncertain graph
ug, and a feature subgraph f, if f ¢ q and Pr(f C ug) = p, then
Pr(ugCq) <1-p.

Proof (Sketch): According to the definition of SIP (Definition
9), we know that

Pr(f Cug) = Pr(pw;i(ug))

fCpw;(ug)Npw; (ug) € PW (ug)

and f ¢ q. Inaddition, the above possible world graphs (pw;(ug) €
PW (ug) and f C pw;(ug)) must not contain g. Thus, these possi-
ble world graphs which support probabilities to Pr(f C ug) must
not provide the probabilities to Pr(ug C f). Hence, Pr(ug C
q) <1—pif Pr(f C ug) = p. Hence, the lemma holds. O

Based on Lemma [Il we can further obtain the probabilistic su-
pergraph filtering strategy as follows.

THEOREM 2. (Probabilistic Supergraph Pruning) Given a de-
terministic query graph q, an uncertain graph ug, a feature sub-
graph f, and a probabilistic threshold 6, if f ¢ q and Pr(f C
ug) > 1 — 6, then ug can be safely pruned.

Proof (Sketch): Since f ¢ g and Pr(f C ug) > 1— 4, we can
obtain Pr(ug C ¢) <1 — (1 —4) < & based on Lemmal[ll Then,
ug will not be in the final result set and can be safely pruned. O

4. PS-INDEX

In this section, we discuss in detail the PS-Index including the
initial feature generation, feature selection and index construction.

4.1 Probabilistic Bounding-based Feature Se-
lection

According to the probabilistic supergraph filtering strategy in
Section[3.2] it is important for the pruning method to select signif-
icant features. Inspired by the previous researches of graph search
in deterministic graphs [l 21], we adopt a two-step approach to
choose features. In the first step, we discover frequent subgraphs in
uncertain graphs [26 [28] to produce the initial feature set, denoted
Fpy. In the second step, we select the final feature set, denoted F/,
from the initial feature set in order to remove redundant features.

In this subsection, we focus on how to generate the initial fea-
ture set efficiently. Although the existing works of uncertain graph

search use the deterministic frequent subgraph mining technique
to generate the initial feature set [23| [24], we will encounter two
challenges in our problem if the deterministic frequent subgraph
mining technique is directly adopted. 1) Which method should be
used in both deterministic and uncertain frequent subgraph mining
methods? 2) Could we enhance the efficiency of the feature gener-
ation process if we employ the uncertain frequent subgraph mining
technique?

For the first challenge, the deterministic frequent subgraph min-
ing methods ignore the uncertainty in uncertain graphs to gener-
ate the initial feature set including meaningless features. Since the
existing solutions of uncertain subgraph query depend on the de-
terministic structural pruning, it needs the deterministic frequent
subgraph mining methods to support. However, in the supergraph
containment query, structural pruning does not work. Hence, we
choose the uncertain frequent subgraph mining to generate the ini-
tial feature set for saving the uncertainty of uncertain graphs.

For the second challenge, the efficiency of uncertain frequent
subgraph mining is the major bottleneck. Since the frequency of
each subgraph pattern becomes a random variable in the uncer-
tain environment, existing works of uncertain frequent subgraph
mining include two different probabilistic semantics. One method
uses the expectation of the frequency to measure whether each sub-
graph pattern is frequent [28]. The other method calculates the
probability that the frequency is greater than minsup threshold to
test whether this subgraph pattern is frequent [26]. We select the
expectation-based framework since the recent research [19] proves
that the expectation-based semantics is much faster and has the
same effect with the probabilistic frequent semantics. Unfortu-
nately, even though we employ the expectation-based semantics,
the efficiency of uncertain frequent subgraph mining is still low
due to the inherent high complexity of computing STP. In or-
der to speed up the process of feature generation, we propose a
probabilistic-bounding-based method, which adopts a tight lower
and upper bound to estimate the ST P of a subgraph pattern and an
uncertain graph instead of the original exact check. In other words,
we continue to use the existing expectation semantics-based uncer-
tain frequent subgraph mining framework but replace the existing
S1P computation method to the following strategies: 1) If the sum
of lower bounds of an subgraph is greater than the threshold, the
subgraph is frequent; 2) If the sum of upper bounds of an sub-
graph is lower than the threshold, the subgraph is infrequent; 3) If
the threshold is in the interval between the sums of lower bounds
and upper bounds, we have to adopt the existing sampling-based
method to estimate the expectation of frequency of the subgraph.
The two bounds are shown in the following lemma.

LEMMA 2. (The Lower/Upper Bound of Subgraph Isomorphism
Probability) Given a deterministic subgraph f, an uncertain graph
ug (whose corresponding deterministic graph is denoted g), if there
are m subgraph isomorphism instances of f in g, where S1; repre-
sents the i-th subgraph isomorphism instance, the SIP of f and ug,

Pr(f C ug), satisfies,
m Pr(SIi)2
Pr(f Cug) 23501 prstyTss,,, Pr(STAST;)
Pr(f Cug) <min{} ", Pr(SL) — 237"
(6)
where Pr(S1;) means the existence probability of the i-th sub-
graph isomorphism instance.

Proof (Sketch): Because the SIP computation can be reduced
the problem of computing a probabilistic DNF formula [24] 28],
Pr(f C ug) can be transformed to the form Pr(SI1V---V SI,,),
where S1; represents the i-th subgraph isomorphism instances. Ac-
cording to the de Caen probability inequality [8] and the Kwerel

ZZ 1 Pv(SI NSI;

813

probability inequality [16], we can obtain the following lower up-
per and the upper bound of Pr(SI; V -- -V SI,,), respectively.

m Pr(SI;)?
) >
Pr(SLi v V SI) *;PT(SIZ‘)'%Z#J' Pr(SI; N SI;)

m i—1

Pr(SIiv---Vv SI,) < {ZPT(SI r(SI; ﬂSI)

Thus, the lemma holds. O

According to Lemma 2] we can significantly enhance the effi-
ciency of the feature generation process since the tight lower and
upper bounds can be performed in polynomial time. Based on the
initial feature set, we can employ the redundancy-aware feature
selection algorithm [3] to select the final feature set consisting of
an effective probabilistic inverted index, called PS-Index, to store
these features in the next subsection.

4.2 Index Construction

After obtaining the selected feature set, we construct a prefix-
search-tree-based index, which allocates a depth-first-search-based
order for each feature in the index construction phase. The detail
of PS-Index is defined as follows.

DEFINITION 10. (PS-Index) Given an uncertain graph database
UGD = {ug,...,ugn} a initial feature set Fy and a selected
feature set F = {f1,..., f+}, a PS-Index constructed on UGD
consists of the following three components:

A Feature Array. It stores the set of all features in F. Each
element in this array has two pointers. A pointer is used to locate
each feature in the prefix search tree. The other pointer points to
the corresponding list of lower/upper bounds of each feature.

A List of Probabilistic Bound-based Arrays. It stores the set of
all lower and upper bounds of selected features in each uncertain
graph. Each unit in this array contain the lower and upper bounds
of a feature in all uncertain graphs and is located by a pointer from
the corresponding feature array.

A Prefix Search Tree. It is constructed in two steps. In the first
step, the prefix search tree stores all features from Fy , each node
of such tree represents a feature by the DF'S code, which translate
a graph into a unique edge sequence, which is generated by per-
forming a depth-first search (DFS) in a graph. [21]. Each node
also has a pointer which can locate the corresponding element in
feature array. In the second step, the nodes which is not chosen in
F'is labeled as an empty node. Please note that the second step can
be quickly finished by the list of pointers from the feature array.

Based on the definition of PS-Index, the index can be constructed
easily. Firstly, we can construct the prefix search tree by the depth-
first-search-based order, meanwhile, the feature array is also built.
Secondly, to the selected features, we build their probabilistic bound-
based arrays in memory. For the features which fail to be selected,
we set them as empty nodes in the prefix tree and store their proba-
bilistic bound-based arrays in disk. Example[Blwill further illustrate
the construction of PS-Index.

EXAMPLE 3 (PS-Index). Given an uncertain graph database
which includes n uncertain graphs, a selected feature set F', we
can build a PS-Index shown in Figure Bl The three components
of the PS-Index is explained as follow. The feature array is in the
most left in Figure 3l The list of probabilistic bound-based feature
array is shown in the middle in Figure[3 where each row represents
n pairs of lower and upper bounds that the corresponding feature
graph is contained n uncertain graph. The prefix search tree is in
the right in Figure[3 We can observe that each element of feature
array has a pointer pointing the probabilistic bound-based feature

Figure 5: An Example of PS-Index

array and another pointer pointing such feature in the prefix tree
(Due to the limited space, we only show two pair pointers of f1 and
f2.). Meanwhile, each feature (it is actually stored via the DF'S
code [21]]) has also a pointer to find the corresponding location in
the feature array. For example, feature f5 is loaded in the prefix
tree, but it is set as empty node after loading the selected feature
set. Thus, fa2 is shown as a white node. On the contrary, f1 is
a selected feature and is stored in the prefix search tree as a blue
node in Figure[3]

Therefore, the PS-Index has two advantages. 1) In the query
phase, the PS-Index has the anti-monotonic property of pruning. In
the other words, if f; is a prefix of f; and f; satisfies the pruning
condition, f; will not be checked. 2) The depth-first-search-order-
based index structure can maximize the pruning power.

5. SAMPLING-BASED VERIFICATION

For the remaining uncertain graphs after the filtering phase, we
have to check their supergraph containment probabilities (SCP).
Because calculating SCP is known to be a #P-hard problem, we
focus on how to design an efficient sampling-based approximation
algorithm to solve it in this section. In Section[5.1] we review some
backgrounds of sampling techniques and propose a simple-random-
sampling-based algorithm to calculate SCP. In order to improve the
efficiency of calculating SCP, we design an unequal-probability-
sampling-based algorithm in Section[3.2}

5.1 Simple-Random-Sampling-based Approach

Since it is infeasible to calculate the SCP of the given query
graph and an uncertain graph exactly due to the high computa-
tional complexity, the sampling-based solutions are practical and
efficient. According to the sampling perspective, the population of
this sampling is the set of all possible world graphs, the SC'P is the
estimated unknown proportion, which is also called the estimated
parameter because sampling is essentially an estimation problem.

To facilitate our discussion, we define the concept of supergraph
containment checking, which is an independent Bernoulli trial.

DEFINITION 11. (supergraph containment checking) Given an
uncertain graph ug, a possible world graph from ug, pw;(ug), and
a deterministic query graph q, the supergraph containment check-
ing between q and pw;(ug) is

SCC(pwi(ug)) = { 1 pwi(ug) C q

0 otherwise

where pw;(ug) C q means that pw;(ug) is a subgraph of q.

Based upon the supergraph containment checking, we propose a
simple-random-sampling-based (SRS) algorithm to calculate SCP,
which is shown in Algorithm 1.

In the SRS algorithm, we sample n possible world graphs. For
each possible world graph, we check whether the possible world
graph ug; is contained by the given deterministic query graph gq.
According to the supergraph containment checking, we can obtain
the successful number of supergraph containment in n samples and

814

Algorithm 1: Simple-Random-Sampling-based Algorithm (SRS)

Input: an uncertain graph ug; a deterministic query graph g, the
number of the sampling n.
Output: an estimated supergraph containment probability, scp
Z + 0;
for ¢ <— 1ton do
Generate a possible world graph pw; (ug) from ug;
L Z « Z + SCC(pw;(ug));

5 SCP « Z;
6 retumS/C\P;

AW N -

can calculate the mean as the estimated SCP. Moreover, Lemma [
reports the bias and variance of SRS algorithm.

LEMMA 3. (Unbiasedness and Variance of Simple-Random-Sampling
Approach) The simple-random-sampling approach is unbiased. In
addition, the variance of this approach is %S/CTD (1—5/6’73), where
5'/073 is the estimated SCP.

Proof (Sketch): According to Algorithm [we know that the
estimator (estimated SCP) is SCP = Ly SCC(pwi(ug)).
Therefore, the expectation of @ is,

/\ 1 n 1 n
E[SCP] = E[~ > SCC(pwi(ug))] = - > BISCC(pwi(ug))] = Pr(ug C q)
im1 i=1
Hence, the estimator S/C’TD is unbiased.
Since SCC(pw;(ug)) is arandom variable which is an indepen-
dent Bernoulli trial, >=" | SCC(pwi(ug)) is a random variable

following the Binomial distribution, the variance of S/C\P is,

Var[@] = Var[% Z SCC(pw;(ug))] = ,,712‘/‘”[2 SCC(pw;(ug))]
i=1 i=1

1 1 — /\
= ~SCP(1 — SCP)~ —8CP(1 — S5CP)
n n

Thus, the lemma holds. O

5.2 Unequal-Probability-Sampling-based Ap-
proach

Although the simple-random-sampling-based approach can esti-
mate SCP, it is not suitable for large-scale uncertain graphs and the
high accurate requirement. The high accuracy leads to very large
size of samplings, and each sampling needs to do a supergraph con-
tainment checking, which is a subgraph isomorphism test. Thus,
the simple-random-sampling-based approach is infeasible for large
uncertain graphs. Thus, we propose an efficient approximation al-
gorithm, unequal-probability-sampling-based (UPS) algorithm, to
estimate SC'P. The basic idea is to group the space of samplings
to avoid 2/VI+1! sampling spaces and reduce the number of sub-
graph isomorphism tests, where |V'| and | E/| are the size of vertices
and edges of the corresponding deterministic graph of the given
uncertain graph, respectively.

Based on our basic idea, we first introduce how to reduce the size
of possible sampling spaces then discuss how to avoid the number
of subgraph isomorphism tests. To facilitate our discussion, we
introduce the concept of maximal common subgraph between a de-
terministic query graph and an uncertain graph.

DEFINITION 12. (Maximum Common Subgraphs (MCS) [14])
Given an uncertain graph ug, a deterministic query graph q, the
maximum common subgraphs of ug and q is the set of largest con-
nected subgraphs of the corresponding deterministic graph of ug
that is subgraph isomorphic to g, denoted as M'S = {ms1,...,msm}.
Note that the size of a graph is measured by the number of edges.
The number of maximum common subgraphs may not be unique.

& ,Cn/ Stop (Condition1)
o N v
/ I~ ~
B - /
4
.~
/ B © @
T VA e
o P \ A
B) C A ~Stop (Condition1
\{‘ v‘v) -~ A Vv op (Condition1)
;o A N
R /7\/ oy o
28 Br--<0 N o o)
. RS N N = Stop (Condition
“® @ > ® ©
() ~/
— N vl /3{7\

Stop (Condition2)

(a) The Sampling Space of S RS algorithm in u go (b) The Sampling Space of U P S algorithm in u go

Figure 6: The Sampling Spaces of SRS and U PG Algorithms

For example, given the uncertain graph ug- in Figure[Tland the
query graph ¢ in Figure 2] they have only one maximum common
subgraph ms, which is the rightmost one in Figure 2l

Based on the concept of maximum common subgraphs, we pro-
pose an early stopping strategy, which can divide all possible world
graphs into several groups and stop each sampling process as early
as possible, in the following lemma. Since we only want to know
which possible world graphs are contained or are not contained by
the query graph, it is not necessary to sample each possible world
graph exactly. Instead, we try to end each sample as early as possi-
ble as long as the containment relationship is known.

LEMMA 4. (Early Stopping Strategy) Given an uncertain graph
ug, a deterministic query graph g, the set of maximum common
subgraphs MS = {ms1,...,msm}, and the current sampled
graph gs (the sets of vertices and edges of gs are denoted as Vi
or Ein, the sets of vertices and edges which are sampled and do
not appear in gs are denoted as Vout or Eout, respectively), this
sampling can be stopped if the one of the following two conditions
is satisfied,

Condition 1: gs must be contained by q if there is at least a
maximum common subgraph ms; in M S such that Vg \ Vine, C
Vout and Evug \ Eme, C Eout, where Vig, Vine,, Eug and Ep.,
are the sets of vertices and edges of ug and mc;, respectively.

Condition 2: gs must not be contained by q if Vin \ V4 # @ or
Ein \ Eq # @, where Vy and E, are the sets of vertices and edges
of q, respectively.

Proof (Sketch): For the condition 1, Vg \ Vine, and Eug \
Emc, means the sets of vertices and edges which belong to the
corresponding deterministic graph of ug and are not contained by
q. If the condition holds, these aforementioned vertices and edges
do not appear in the current sampled graph gs, thus gs must be
contained by gq.

For the condition 2, Vi, \ Vg # @ or E;y, \ E4 # @ means that
there are at least one vertex or one edge which is in g, but is not
contained by ¢q. Hence, gs must not be contained by ¢ under this
condition. Thus, the lemma holds. O

We illustrate the early stopping strategy via the example.

EXAMPLE 4 (Early Stopping Strategy). Given an uncertain graph
ugs in Figure[ll a query graph q in the leftmost of Figure[2] and
their maximum common subgraph in the rightmost of Figure[2 we
show the complete sampling space of uga, which should include
2VIHIE possible world graphs, in Figure[6(a)] Each path in Fig-
ure[6(a)|corresponds to a sampling in SRS algorithm. Figure[6(D)]
shows the sampling space based on the early stopping strategy. We
can find that each sampling does not need to traverse a path in-
stead of ends as early as possible. Thus, the early stopped sampled
graph usually includes a set of possible world graphs. Note that a
sampling process must end if this sampling only satisfies any early

815

Algorithm 2: Unequal-Probability-Sampling-based Algorithm (UPS)

Input: an uncertain graph ug; a deterministic query graph g, the
number of the sampling n.

Output: an estimated supergraph containment probability, SC Py
1 MC < Finding all maximal common subgraphs of ug and ¢;
2 S@qﬂ—O;S(—OﬂM—O;
3 fori< ltondo
4 s; < RS(ug,MC,q.n,2,2,2,9,0);
5 if The i-th sampling is not a duplicate of previous sampling then
6 L S < S+ s;;
7

vev+1;
8 return SC Py + %;

Algorithm 3: RecursiveSampling (RS)

Input: an uncertain graph ug; a set of maximal common subgraphs
MC, a deterministic query graph g, the number of the
sampling n, the set of appearing vertices of ug V;,, the set of
appearing edges of ug Ej;,, the set of disappearing vertices of
ug Vout, the set of disappearing edges of ug Eoqt¢, the current
probability Pr.

if Vin, \ Vy # @ or Ein \ Eq # @ then

2 |_ return 0; (Early Stopping Condition 2)

3 elseif 3mc; € MC s.t. Vg \ Vine; € Vout and

Eug \ Eme; C Eout then
4 L return (Early Stopping Condition 1)

—

__Pr .
T—(1—Pr)"°>
5 select a vertex or an edge, ve, from the remaining vertices and edges
of ug;
6 if ve is randomly decided to appear then
return RS(ug, M C,q,n,V;, U ve(or
Ein Uve),Vout,Eout,p(ve)Pr);

8 else
9 L

stopping condition. Hence, it is impossible that multiple early stop-
ping conditions hold at the same time. To sum up, we can observe
that the size of sampling space based on the early stopping strategy
is significantly smaller than that of SRS algorithm.

The early stopping strategy reduces the size of the sampling space,
we further hope to avoid the number of subgraph isomorphism tests
as well. Thus, we employ a classical unbiased unequal-probability-

return RS(ug, M C,q,n,Vin,Ein,Vout U ve(or
Eout Uwve),(1 — p(ve))Pr);

sampling estimator, the Horvitz-Thompson estimator S@T [L8],
which can not only depend on the distinct samples but also provide
a smaller variance than that of the simple-random-sampling estima-
tor. In other words, the duplicate samples are not considered. Thus,
the number of subgraph isomorphism tests is significant smaller
than that of simple-random-sampling estimator, which has to test
subgraph isomorphism for each sample.

DEFINITION 13. (Horvitz-Thompson Estimator(S@T L8]
Given an uncertain graph ug, a query graph g, the size of samples
n, the weight of each sample based on the early stopping strategy
w; (1 < i < n), the Horvitz-Thompson estimator is

SCPur =Y =
=1
where m; = 1 — (1 — ¢;)", ¢; is the sampled probability, v is the
number of distinct sampled graphs.

Based on the early stopping strategy and the Horvitz-Thompson
estimator, we design an efficient unequal-probability-sampling-based
(UPS) algorithm. The pseudo codes of UPS algorithm is shown in

Algorithm [2l This algorithm first finds the set of maximum com-
mon subgraphs in line 1. In lines 3-7, the algorithm performs n
samples. In each sample, it recursively call a sub-procedure, called
as RecursiveSampling, to calculate the parameters w; and 7; of
Horvitz-Thompson estimator. In addition, the sampled graph is not
duplicate of previous sampling, it is just computed into the estima-
tor. The final estimator, namely SC P, is returned in line 8.

In Algorithm 2] the core is the sub-procedure, RecursiveSam-
pling (RS), which is shown in Algorithm 8] The two conditions of
the early stopping strategy are used to end the recursive procedure
in lines 1-4. If the two conditions cannot be satisfied, this algo-
rithm continues to select a new vertex or edge to sample randomly
in lines 5-9. Note that this algorithm always prefers to choose ver-
tices since the probabilities of edges are the conditional probabili-
ties under two corresponding vertices already appear. It is easer to
satisfy the early stopping strategy if we first sample vertices.

6. EXPERIMENTAL EVALUATION

In this section, we report the experimental results for the effi-
ciency of proposed algorithms. In order to conduct a fair compari-
son, all the experiments are performed on an Intel(R) Core(TM) i7
3.40GHz PC with 4GB main memory, running on Microsoft Win-
dows 7. Moreover, all the algorithms were implemented and com-
piled using Microsoft’s Visual C++ 2010.

In order to test our proposed methods, we use a real-world un-
certain graph database and a synthetic dataset which is a classical
deterministic graph datasets with the synthetic probability distri-
bution. For the real dataset, it comes from a real protein-protein
interaction (PPI) network database, STRINd], which includes the
PPI networks of organisms. In a PPI network, vertices represent
proteins, edges represent interactions between proteins, the labels
of vertices are the COG functional annotations of proteins, and the
existence probabilities of edges derive from the STRING database.
We extract 1000 uncertain graphs from STRING. The average num-
bers vertices and edges of 1000 uncertain graphs are 43.2 and 97.5,
respectively. Moreover, the average existence probabilities of edges
in our dataset is 0.486. Please note that each numerical value in
this dataset is always a 3-digit integer within the interval between
150 and 999. In fact, the integer is the decimal value of the cor-
responding probability. Besides the real uncertain graph database,
we allocate probabilities which follow Gaussian distribution to a
classical deterministic graph databset. Assigning probabilities to
deterministic database in order to generate uncertain data is widely
accepted by the previous related works [101 24} 23]. The determin-
istic graph dataset, denoted AIDS [3]], has been widely used to test
deterministic graph queries. It extracts 10000 graphs from the orig-
inal 43,905 structured chemical compounds. The average numbers
vertices and edges of AIDS are 24.3 and 26.5, respectively. We set
probabilities of vertices and edges with high mean (0.8) and low
variance (0.1). The characteristics of and the default parameters
above datasets are shown in Table 2] We also prepare the query
sets and graph databases in a way similar to the existing uncertain
graph queries [10l 24} 23]]. Each query set ¢; contains 100 con-
nected query graphs. Note that 7 in ¢; means the number of edges
in g;, such as ¢s50, q100, etc. We also randomly select 2K, 4K, 6K,
8K and 10K graphs from AIDS and set probabilities to them for
the scalability test. In addition, the sample size is set to be 1000 for
SRS and U PS algorithms.

6.1 Time Efficiency Test

In this subsection, we verify the efficiency of the proposed al-
gorithms and pruning strategies. We compare three algorithms:

"http://string-db.org/newstring_download/

816

Dataset | # of Graphs. | Ave. Vertices | Ave. Edge | Ave. Prob.
STRING 1000 43 97 0.486
AIDS 10000 24.3 26.5 0.8

Table 2: Characteristics and Default Parameters of Datasets

NoPruning, SRSPruning, and UPSPruning. PS-Index. NoPruning
uses SRS algorithm in the verification phase and has on the prun-
ing method (Theorem 2) in the filtering phase. Both SRSPruning
and UPSPruning employ the PS-Index and pruning strategy but use
SRS and U PS algorithms in their verification phase, respectively.

Varying Size of Query. Figures[7(a)|and[7(b)|show the total run-
ning time of the three competitive algorithms w.r.t. size of query in
STRING and AIDS datasets, respectively. When the size of query
increases, we observe that the running time of all the algorithms
goes up. UPSPruning is always the fastest algorithm, NoPruning
is the slowest one, and SRSPruning is faster than NoPruning.

It is reasonable because UPSPruning and SRSPruning employ
the PS-Index and the probabilistic pruning to avoid most SC'P
computation. However, NoPruning has no the pruning and only
calculates SC'P with each uncertain graph. Furthermore, UPSPrun-
ing uses the early stopping strategy and the unequal-probability-
sampling estimator to reduce the sampling spaces and avoid re-
dundant subgraph isomorphism tests. Hence, UPSPruning outper-
forms SRSPruning in the two datasets.

Varying Probabilistic Threshold. Figures[7(c)]-[7(d)]report the
running time w.r.t. probabilistic threshold. We can find that UP-
SPruning is the fastest algorithm in most of time. Different from
the results w.r.t size of query, we observe that, by increasing prob-
abilistic threshold, the total running time reduces. Moreover, the
changing trends of the running time of UPSPruning and SRSPrun-
ing is relative stable. The pruning power of probabilistic pruning is
further reported in the next subsection.

6.2 Pruning Power Test

To better verify the effect of our proposed pruning, in this sub-
section, we report the pruning ratio of the probabilistic pruning on
Figures - Due to the space limitation, we only show the
pruning ratio w.r.t. size of query of the two sampling algorithms.
The results of pruning ratio w.r.t other parameters are similar.

Varying Size of Query. Figures and [7(D)] show the pruning
ratio w.r.t. size of query in STRING and AIDS datasets, respec-
tively. The pruning ratio in STRING dataset is smaller than that
on AIDS dataset. The smaller pruning ratio explains the reason
that the computation saved in STRING is less than that in AIDS.
Moreover, the less pruning ratio makes sense because the average
probabilities of vertices and edges in AIDS follows the Gaussian
distribution (mean=0.8, variance=0.1), most vertices and edges in
AIDS likely appear. Thus, the probability of Pr(f C ug) usually
is high, the pruning condition in Theorem 2 can be satisfied easily.

6.3 Verification Test

In this subsection, we report the verification time and the approx-
imation quality of the two algorithms. However, due to the space
limitation, we only show the verification time of the two sampling
algorithms in STRING.

Varying Size of Query. Figures shows the comparison of
SRS and U PS algorithms in the verification step. We can observe
that U P.S algorithm outperforms SRS algorithm in efficiency. In
particular, U PS is significantly faster than SRS when the size of
query is large. This result also verifies that the early stopping strat-
egy and unequal-probability-sampling-based estimator can reduce
the sample space and avoid duplicate subgraph isomorphism tests.

http://string-db.org/newstring_download/

©
)
=3
<3

1500,

w
@
=3

= ®UPSPruning o D el
w @ .

g & SRSPruning [W

51000 Dk NoPruning g)

2 2 —

o 500 . o 1of

£ . £ f & UPSPruning
S| e A < A SRSPruning
N GITE e T *NoPruning

Running Time (Seconds)

®UPSPruning| ®UPSPruning
'* A SRSPruning * ASRSPruning
NoPruning pkNoPruning

Running Time (Seconds)

2

q200 4250 q100 _ q150 9200
size of query

g a50

. q150
size of query

(@) STRING: time vs. size of query (§=0.5) (b) AIDS: time vs. size of query (6=0.5)

9250

i 5

(d) AIDS: time vs. threshold (size=150)

0.4 0.5 0.6 0.4 05 0.6
pobabilistic thresold pobabilistic thresold

(C) STRING: time vs. threshold (size=150)

10 10 400 ?ggg
- [®UPS . *
~ - 2. |#4SRS 500 *
9 9 S 300 S
& & 8 3 el
o o 1) [2) * ekl "
] 3 by o -
< < 2 200 g e
= [S
£ £)) A .
5 5 £100 £ B #®UPSPruning
* & S né: *o ASRSPruning
10 & Probabilistic Pruning 18 4 Probabilistic Pruning « & oPruning
(?50 q100 q150 q200 q250 50 q100 q150 200 q250 ci% q100 q150 200 q250 B 4 6 8 10
size of query size of query size of query Number of Graphs (K)

(€) STRING: pruning ratio vs. size of query (5=0.5) () AIDS: pruning ratio vs. size of query (5=0.5)

(g) STRING: verification vs. size of query (§=0.5)

(h) Scalability: time vs. size of databases

Figure 7: Performance of Efficiency, Pruning Power, Approximation Quality and Scalability

Table 3: Accuracy in Accident

Probabilistic Threshold [>1v> Algorithm | UPS Algorithm
P R P R
03 056 059 [072] 076
0.4 062 | 064 [077] 08
05 068 | 067 | 083 083
06 075 | 072 [084] 088
0.7 08 | 077 00T | 004

Approximation Quality.Besides offering efficient running time,
the accuracy of sampling-based approximation algorithms is the
other important evaluation criterion. We use the precision which
equals Mﬁ%m and the recall which equals M%}f‘m to measure
the accuracy of approximation algorithms. Please note that AR
means the result generated from the approximation algorithm, and
E R is the result generated from the exact algorithm. Table[3lshows
the precision and the recall w.r.t varying probabilistic threshold in
the STRING dataset. That is because the variance of U PS estima-
tor is usually lower than that of SRS.

6.4 Scalability Test

In this subsection, we report the scalability of our proposed algo-
rithms. In Figure increasing the number of uncertain graphs
in the dataset from 2k to 10k, we observe that the running time
curves of the UPSPruning and SRSPruning algorithms al-
most change linearly. However, the running time curve of NoPrun-
ing algorithm is exponential. In addition, the slopes of the curves
of UPSPruning and SRS Pruning are different. The slope of
U PS Pruning is smaller than that of SRS Pruning. This result
is reasonable because U P.S Pruning and SRS Pruning use the
PS-Index and probabilistic pruning techniques. Most unqualified
uncertain graphs are pruned in the filtering step. Furthermore, the
early-stopping-strategy can reduced the running time in each sam-
ple, thus slope of curve of U PS Pruning is smaller.

7. RELATED WORK

In this section, we will review the related work from two cate-
gories, query processing in deterministic and uncertain graphs.

7.1 Deterministic Supergraph Queries

There are two types of closely related graph queries in determin-
istic graphs: subgraph query and supergraph containment query.
Due to the limited space, we only discuss the related work of su-
pergraph containment query in this subsection.

Supergraph containment query aims to find all graphs g; € GD
and g; C ¢ from the given graph database GD. Most existing

817

solutions adopt another filtering logic, called the exclusion logic
[5], to avoid unnecessary subgraph isomorphism tests.

Firstly, Chen et al. [5] first proposed the concept of supergraph
containment query and design a contrast-subgraph-based index (c-
index). Especially, in order to obtain the maximum pruning power,
c-index designs a redundancy-aware feature selection method. Zhang
et al. [25] proposed a novel tree structure, GPTree, to integrate
the graph database for saving the redundant subgraph isomorphism
tests. In addition, a set of significant frequent subgraphs is mined
as the indexing features in this method. Recently, Cheng et al. [6]
design a new low-cost index, /G-index, based on a method of graph
integration, which is used to approximately share the most com-
mon subgraphs in the graph database. In addition, based on this
low-cost index, some result graphs can be directly returned with-
out subgraph isomorphism test. Thus, the verification process will
be dramatically speeded up. However, in uncertain scenario, the
aforementioned approaches cannot be extended easily since edges
in common subgraphs may have different probabilities. If we only
store the lowest probability for each edge of a common subgraph,
the pruning effect of the index will be reduced significantly.

7.2 Uncertain Graph Queries

In this subsection, we mainly review four kinds of uncertain
graph query techniques. A probabilistic XML (PXML) database
can be considered as a special uncertain graph database. Nierman
etal. [12] first proposed a simple PXML model, ProDB, which used
the probabilistic tree structure to model PXML databases. Kimelfeld
et al. [[11] summarized previous works of probabilistic XML and
provided a series of efficient algorithms for different probabilistic
XML models. Moreover, based on the PrX M L{i"®mue} model,
Chang et al. [4] proposed the efficient ranking algorithm for prob-
abilistic twig matching results. The aforementioned studies mainly
focused on the efficient probability computation over uncertain tree.
Thus, they may have polynomial-time solution due to the constraints
of the XML data. However, our work aims to a general uncertain
graph query, which is #P-hard problem.

Besides querying over PXML databases, distance-based queries
over uncertain graphs also attracted much attention recently. Yuan
et al. [22] proposed the shortest path query over general uncertain
graphs under the possible world semantics. Hua et al. [9] defined
several probabilistic shortest path queries over uncertain road net-
works. In addition, Jin et al. [10] provided the work of reacha-
bility query over uncertain graph uncertain the possible world se-
mantics. Potamias et al. [13] extended the concept of the uncertain
distance and proposed several definition and efficient solutions of

kNN query over uncertain graphs. The above queries mainly base
upon the concept of uncertain distances, which becomes a random
variable in the uncertain graphs. However, our work handles mul-
tiple uncertain graphs rather than an uncertain graph.

Since PPI networks are considered as real uncertain graph datasets,

the other related topic is to handle PPI networks data in bioinfor-
matics. [7]] aimed to predict protein functions based on different
level neighbours and topological weights. Furthermore, [17] pro-
vided a comparison of different approaches estimating the protein
interaction confidence, namely the probabilities of edges in uncer-
tain graphs. Therefore, the aforementioned two works considered
different issues with our paper.

In addition, the most closely related research to our work is about
probabilistic subgraph query over uncertain graphs. Yuan et al. pro-
posed the first work of probabilistic subgraph search over uncer-
tain graphs [24]. Two efficient probabilistic pruning methods and
a probabilistic inverted index were designed. Furthermore, Yuan
et al. [23] defined the problem of probabilistic subgraph similar-
ity search over uncertain graphs and provided the efficient solu-
tion, which included an effective matrix index and the lower and
upper bound-based probabilistic pruning methods. Even though
the two works utilizes the filtering-and-verification framework, our
solution has the essential differences with the uncertain subgraph
queries. Uncertain subgraph queries need to construct two indexes,
deterministic graph index and probabilistic index, for the deter-
ministic and probabilistic pruning, and aim to calculate the sub-
graph isomorphism probability. However, for the probabilistic su-
pergraph containment query, the deterministic index has no contri-
bution. Our work needs to efficiently handle the supergraph con-
tainment probability instead of the subgraph isomorphism proba-
bility. In addition, Zou et al. [27]] proposed the problem of finding
top-k£ maximal cliques in an uncertain graph. Besides the afore-
mentioned work of uncertain graph queries, uncertain graph mining
has also been studied recently. Zou et al. presented mining algo-
rithm based on expected support semantic [28] and probabilistic
semantic, respectively [26].

8. CONCLUSIONS

In this paper, a new uncertain graph query, probabilistic super-
graph containment query, is proposed. We prove that this problem
is #P-hard. Due to the high computational complexity, a proba-
bilistic supergaph filtering strategy and a filtering-and-verification
framework have been designed in order to avoid tedious computa-
tion. Moreover, a novel probabilistic inverted index, PS-Index, is
developed to speed up the query processing. An unequal-probability-
sampling-based algorithm is also proposed to efficiently compute
supergraph containment probabilities in the verification phase. Ex-
tensive experiments on both real and synthetic datasets verify the
effectiveness and efficiency of the proposed methods.

9. ACKNOWLEDGEMENTS

The authors thank Prof. Bogdan Cautis and the anonymous re-
viewers for their insightful and constructive comments. This work

is supported in part by the Hong Kong RGC Project N_HKUST637/13,

National Grand Fundamental Research 973 Program of China un-
der Grant 2012-CB316200, National Natural Science Foundation
of China (NSFC) Grant No. 61328202, Microsoft Research Asia
Gift Grant, Microsoft Research Asia Fellowship 2012 and Google
Faculty Award 2013.

10 REFERENCES

] E. Adar and C. Re. Managing uncertainty in social networks. /[EEE
Data Eng. Bull., 30(2):15-22, 2007.

818

[2]

[3]

[4]

[6

=

[7]

[9]
[10]

[11]

[12]

[13

—_

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

S. Berretti, A. D. Bimbo, and E. Vicario. Efficient matching and
indexing of graph models in content-based retrieval. IEEE Trans.
Pattern Anal. Mach. Intell., 23(10):1089-1105, 2001.

K. R. Beutner, G. Prasad, E. Fletcher, C. DeCarli, and O. T.
Carmichael. Estimating uncertainty in brain region delineations. In
IPMI, pages 479—490, 2009.

L. Chang, J. X. Yu, and L. Qin. Query ranking in probabilistic xml
data. In EDBT, pages 156167, 2009.

C. Chen, X. Yan, P. S. Yu, J. Han, D.-Q. Zhang, and X. Gu. Towards
graph containment search and indexing. In VLDB, pages 926-937,
2007.

J. Cheng, Y. Ke, A. W.-C. Fu, and J. X. Yu. Fast graph query
processing with a low-cost index. VLDB J., 20(4):521-539, 2011.
H. N. Chua, W.-K. Sung, and L. Wong. Exploiting indirect
neighbours and topological weight to predict protein function from
protein-protein interactions. Bioinformatics, 22(13):1623-1630,
2006.

D. de Caen. A lower bound on the probability of a union. Discrete
Mathematics, 169(1-3):217-220, 1997.

M. Hua and J. Pei. Probabilistic path queries in road networks: traffic
uncertainty aware path selection. In EDBT, pages 347-358, 2010.
R. Jin, L. Liu, B. Ding, and H. Wang. Distance-constraint reachability
computation in uncertain graphs. PVLDB, 4(9):551-562, 2011.

B. Kimelfeld, Y. Kosharovsky, and Y. Sagiv. Query efficiency in
probabilistic xml models. In SIGMOD Conference, pages 701-714,
2008.

A. Nierman and H. V. Jagadish. Protdb: Probabilistic data in xml. In
VLDB, pages 646—657, 2002.

M. Potamias, F. Bonchi, A. Gionis, and G. Kollios. k-nearest
neighbors in uncertain graphs. PVLDB, 3(1):997-1008, 2010.

J. W. Raymond and P. Willett. Maximum common subgraph
isomorphism algorithms for the matching of chemical structures.
Journal of Computer-Aided Molecular Design, 16(7):521-533, 2002.
R. Saito, H. Suzuki, and Y. Hayashizaki. Interaction generality, a
measurement to assess the reliability of a protein-protein interaction.
Nucleic Acids Research, 30(5):1163-1168, 2002.

Y. Sathe, M. Pradhan, and S. Shah. Inequalities for the probability of
the occurrence of at least m out of n events. Journal of Applied
Probability, pages 1127-1132, 1980.

S. Suthram, T. Shlomi, E. Ruppin, R. Sharan, and T. Ideker. A direct
comparison of protein interaction confidence assignment schemes.
BMC Bioinformatics, 7:360, 2006.

S. K. Thompson. Sampling. Wiley Desktop Editions, 2012.

Y. Tong, L. Chen, Y. Cheng, and P. S. Yu. Mining frequent itemsets
over uncertain databases. PVLDB, 5(11):1650-1661, 2012.

L. G. Valiant. The complexity of enumeration and reliability
problems. SIAM J. Comput., 8(3):410-421, 1979.

X. Yan, P. S. Yu, and J. Han. Graph indexing: A frequent
structure-based approach. In SIGMOD Conference, pages 335-346,
2004.

Y. Yuan, L. Chen, and G. Wang. Efficiently answering probability
threshold-based shortest path queries over uncertain graphs. In
DASFAA (1), pages 155-170, 2010.

Y. Yuan, G. Wang, L. Chen, and H. Wang. Efficient subgraph
similarity search on large probabilistic graph databases. PVLDB,
5(9):800-811, 2012.

Y. Yuan, G. Wang, H. Wang, and L. Chen. Efficient subgraph search
over large uncertain graphs. PVLDB, 4(11):876-886, 2011.

S. Zhang, J. Li, H. Gao, and Z. Zou. A novel approach for efficient
supergraph query processing on graph databases. In EDBT, pages
204-215, 2009.

Z. Zou, H. Gao, and J. Li. Discovering frequent subgraphs over
uncertain graph databases under probabilistic semantics. In KDD,
pages 633-642, 2010.

Z.Zou, J. Li, H. Gao, and S. Zhang. Finding top-k maximal cliques
in an uncertain graph. In /ICDE, pages 649-652, 2010.

Z.Zou, J. Li, H. Gao, and S. Zhang. Mining frequent subgraph
patterns from uncertain graph data. IEEE Trans. Knowl. Data Eng.,
22(9):1203-1218, 2010.

	Introduction
	Problem Definition
	Preliminaries
	Probabilistic Supergraph Containment Query

	The Filtering-and-Verification Framework
	Cost Model Analysis
	A Probabilistic Filtering Strategy

	PS-Index
	Probabilistic Bounding-based Feature Selection
	Index Construction

	Sampling-based Verification
	Simple-Random-Sampling-based Approach
	Unequal-Probability-Sampling-based Approach

	Experimental Evaluation
	Time Efficiency Test
	Pruning Power Test
	Verification Test
	Scalability Test

	Related Work
	Deterministic Supergraph Queries
	Uncertain Graph Queries

	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

